Batch Adsorption: Intraparticle Adsorbate Concentration Profile Models

G. H. Xiu

Dept. of Chemical Engineering, Shenyang Institute of Chemical Technology, Shenyang 110021, China

N. Wakao

Dept. of Chemical Engineering, Yokohama National University, Yokohama 240, Japan

Several models proposed describe the adsorbate concentration profile in an adsorbent particle. A theoretical consideration is made in this work to see what bulk concentrationtime curves are predicted by these models when applied to a batch adsorption. A similar, but experimental, comparison was made in terms of parameter estimation by Kaguei et al. (1989).

Mass balance for batch adsorption with a linear isotherm is expressed:

$$\frac{\partial A}{\partial \tau} = \frac{1}{x^2} \frac{\partial}{\partial x} \left(x^2 \frac{\partial A}{\partial x} \right) \tag{1a}$$

$$\frac{dA_b}{d\tau} = -N\left(\frac{\partial A}{\partial x}\right)_{x=1} \tag{1b}$$

at
$$\tau = 0$$
, $A = 0$, $A_b = 1$ (1c)

at
$$x = 1$$
, $\frac{\partial A}{\partial x} = Bi(A_b - A)$ (1d)

Exact Solution (Do and Rice, 1986)

$$(A_b)_{\text{exact}} = (A_b)_{\infty} + \sum_{n=1}^{\infty} A_n \exp(-\lambda_n^2 \tau)$$
 (2a)

where

$$(A_b)_{\infty} = \frac{3}{3+N} \tag{2b}$$

$$A_n = \left[1 + \frac{N}{2} \left(1 - \frac{\lambda_n^2}{NBi} \right)^2 \left(\frac{1}{\sin^2 \lambda_n} - \frac{\cot \lambda_n}{\lambda_n} \right) \right]^{-1}$$
 (2c)

and λ_n is an *n*th positive root of the following equation:

$$\lambda \cot \lambda - 1 = \frac{\lambda^2}{N - \frac{\lambda^2}{Ri}}$$
 (2d)

Nth-Order Concentration Profile Model

Do and Mayfield (1987) assumed

$$A = a_0 + a_n x^n \tag{3a}$$

and found the exponent to be approximately:

$$n = 0.123\tau^{-0.68} \tag{3b}$$

Their study on the batch adsorption with an infinitely large volume of tank is modified to that with a finite volume of tank. The loss of adsorbate from the bulk fluid equals the gain of the adsorbent:

$$\frac{dA_b}{d\tau} = -\frac{N}{3} \frac{d\overline{A}}{d\tau} \tag{4a}$$

where \overline{A} is the average concentration in a particle.

$$\overline{A} = 3 \int_0^1 Ax^2 dx \tag{4b}$$

An integration then gives:

$$A_b - 1 = -\frac{N\overline{A}}{3} \tag{4c}$$

$$=-N\left(\frac{a_0}{3}+\frac{a_n}{n+3}\right) \tag{4d}$$

Correspondence concerning this article should be addressed to G. H. Xiu

Combining Eq. 4d with Eqs. 1b and 1d in which Eq. 3a is substituted, one obtains:

$$\left(\frac{1}{Bi} + \frac{1}{n+3}\right) \frac{dA_b}{d\tau} = 3 - (3+N)A_b$$
 (5)

Hence, let us approximate the power "-0.68" by "-2/3" so that Eq. 3b becomes (in the range of $\tau = 0.001-0.2$):

$$n = 0.133\tau^{-2/3} \tag{6}$$

As a matter of fact, with the aid of Eq. 6, Eq. 5 is analytically solved to give:

$$(A_b)_{mh} = (A_b)_{\infty} \left\{ 1 + \frac{N}{3} \exp \left[-\left(1 + \frac{N}{3}\right)\psi \right] \right\}$$
 (7a)

where

$$\psi = \frac{9}{1 + \frac{3}{Ri}} \left\{ \tau + \gamma^2 Bi \left[\tau^{1/3} - \gamma \tan^{-1} \left(\frac{\tau^{1/3}}{\gamma} \right) \right] \right\}$$
 (7b)

$$\gamma = \sqrt{\frac{0.133}{3 + Bi}} \tag{7c}$$

Some other models examined in our note are discussed below.

Parabolic Concentration Profile Model

Liaw et al. (1979) and Rice (1982) assumed

$$A = a_0 + a_2 x^2 \tag{8a}$$

and obtained

$$(A_b)_{\text{par}} = (A_b)_{\infty} \left[1 + \frac{N}{3} \exp\left(-\frac{3+N}{\frac{1}{Bi} + \frac{1}{5}}\tau\right) \right]$$
(8b)

Quartic Concentration Profile Model

Do and Rice (1986) assumed

$$A = a_0 + a_2 x^2 + a_4 x^4 (9a)$$

and obtained

$$(A_b)_{\text{ouar}} = (A_b)_{\infty} + D_1 \exp(-d_1 \tau) + D_2 \exp(-d_2 \tau)$$
 (9b)

where

$$d_1, d_2 = \frac{u_1}{2u_2} \left(1 \pm \sqrt{1 - \frac{4u_2}{u_1^2 (A_b)_{\infty}}} \right)$$
 (9c)

$$D_i = \frac{1 - (A_b)_{\infty} [1 + 3Nd_i/140]}{2 - (A_b)_{\infty} u_i d_i} \quad (i = 1, 2)$$
 (9d)

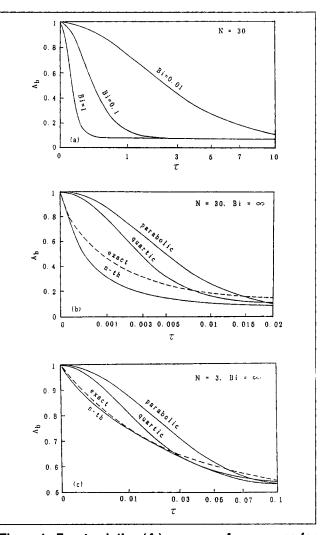


Figure 1. Exact solution $(A_b)_{\text{exact}} - \tau$ vs. $A_b - \tau$ curves for *n*th-order, parabolic and quartic concentration models: (a) N = 30, $Bi \le 1$; (b) N = 30, $Bi = \infty$; (c) N = 3, $Si = \infty$.

$$u_1 = \frac{11}{84} + \frac{3}{140}N + \frac{1}{3Ri}$$
 (9e)

$$u_2 = \frac{1}{420} + \frac{9}{420Bi} \tag{9f}$$

Figures 1a–1c (abscissa proportional to $\sqrt{\tau}$) illustrate $A_b - \tau$ curves calculated from Eqs. 2a, 7a, 8b, and 9b, respectively. As shown in Figure 1a, when $Bi \le 1$, there is no appreciable difference between all the curves, $(A_b)_{\text{par}} - \tau$, $(A_b)_{\text{quar}} - \tau$, $(A_b)_{\text{mth}} - \tau$ and $(A_b)_{\text{exact}} - \tau$. Figures 1b and 1c show the curves with $Bi = \infty$: When N = 30, all the curves for concentration profile models differ considerably from the $(A_b)_{\text{exact}} - \tau$ curve. The deviation becomes larger increasingly in the order of that with $(A_b)_{\text{mth}} - \tau$, $(A_b)_{\text{quar}} - \tau$, and $(A_b)_{\text{par}} - \tau$. When N = 3, the $(A_b)_{\text{mth}} - \tau$ curve is close to the $(A_b)_{\text{exact}} - \tau$ curve, but the other two curves differ from the $(A_b)_{\text{exact}} - \tau$ curve. The deviation is again the largest with $(A_b)_{\text{par}} - \tau$ curve.

It is obvious that the intraparticle concentration profile becomes less significant when *Bi* is small: fluid-to-particle mass-

transfer controls the overall rate. On the other hand, the concentration profile plays an important role when Bi is large: the overall rate is controlled by the diffusion of adsorbate in particle. In the latter case, as far as the prediction of bulk concentration in a batch tank is concerned, none of the concentration profile models so far proposed are satisfactory.

Rice and Do will propose a new approximation for the situation when $Bi \rightarrow \infty$ in their book titled Applied Mathematics and Modeling for Chemical Engineers, which will be published in 1994.

Notation

A = dimensionless intraparticle concentration, $q/(KC_0)$

 A_h = dimensionless bulk fluid concentration, C/C_0

 $Bi = Biot number, k_m R/(KD_s)$

C = bulk fluid concentration

 C_0 = initial bulk fluid concentration

 $D_s = surface diffusivity$

 \vec{K} = linear equilibrium adsorption constant

 k_m = particle-fluid mass-transfer coefficient

 $m_p = \text{mass of adsorbent}$

 $\hat{N} = 3m_{p}K/(V\rho_{p})$

q = adsorbed concentration

R = radius

t = time

V = liquid volume

x = dimensionless radial distance variable

Greek letters

 ρ_p = particle density

 $\tau = D_s t/R^2$

Literature Cited

Do, D. D., and P. L. J. Mayfield, "A New Simplified Model for Adsorption in a Single Particle," AIChE J., 33, 1397 (1987).

Do, D. D., and R. G. Rice, "Validity of the Parabolic Profile As-

sumption in Adsorption Studies," AIChE J., 32, 149 (1986). Kaguei, S., N. Ono, and N. Wakao, "Parameter Estimation in Batch Adsorption with a Linear Isotherm," Chem. Eng. Sci., 44, 2565

Liaw, C. H., J. S. P. Wang, R. A. Greenkorn, and K. C. Chao, "Kinetics of Fixed-Bed Adsorption: A New Solution," AIChE J., 25, 376 (1979).

Rice, R. G., "Approximate Solution for Batch, Packed Tube and Radial Flow Adsorbers-Comparison with Experiment," Chem. Eng. Sci., 37, 83 (1982).

Manuscript received Feb. 17, 1993, and revision received Apr. 20, 1993.